Ответ:
Доказательство ниже
Объяснение:
Расширение
Покажите, что cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Я немного запутался, если бы я сделал Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), он станет отрицательным, так как cos (180 ° -theta) = - costheta в второй квадрант. Как мне доказать вопрос?
Пожалуйста, смотрите ниже. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Как вы проверяете 1/8 [3 + 4cos2x + cos4x] = cos ^ 4x?
RHS = cos ^ 4x = [(2cos ^ 2x) / 2] ^ 2 = 1/4 [1 + cos2x] ^ 2 = 2 / (4 * 2) [1 + 2cos2x + cos ^ 2 (2x)] = 1 / 8 [2 + 4cos2x + 2cos ^ 2 (2x)] = 1/8 [2 + 4cos2x + 1 + cos4x] = 1/8 [3 + 4cos2x + cos4x] = LHS
Как вы проверяете cos ^ 2 2A = (1 + cos4A) / 2?
См. ниже Свойство использования: cos2A = 2cos ^ 2A-1 Правая сторона: = (1 + cos4A) / 2 = (1 + cos2 (2A)) / 2 = (1+ (2cos ^ 2 (2A) -1)) / 2 = (1-1 + 2cos ^ 2 (2A)) / 2 = (отмена 1-cancel1 + 2cos ^ 2 (2A)) / 2 = (2cos ^ 2 (2A)) / 2 = (cancel2cos ^ 2 (2A) )) / cancel2 = cos ^ 2 (2A) = левая сторона