Ответ:
гипотенуза
Объяснение:
Пусть известная нога будет
Разрешены только положительные решения
Гипотенуза прямоугольного треугольника составляет 39 дюймов, а длина одной ноги на 6 дюймов длиннее, чем другой ноги. Как вы находите длину каждой ноги?
Ноги имеют длину 15 и 36. Способ 1. Знакомые треугольники. Первые несколько прямоугольных треугольников со стороной нечетной длины: 3, 4, 5 5, 12, 13 7, 24, 25 Обратите внимание, что 39 = 3 * 13, поэтому будет работать треугольник со следующими сторонами: 15, 36, 39, т.е. в 3 раза больше, чем 5, 12, 13 треугольник? Дважды 15 - 30, плюс 6 - 36 - да. color (white) () Метод 2 - Формула Пифагора и маленькая алгебра Если меньшая нога имеет длину x, то большая нога имеет длину 2x + 6, а гипотенуза: 39 = sqrt (x ^ 2 + (2x + 6) ^ 2) color (white) (39) = sqrt (5x ^ 2 + 24x + 36) Квадрат с обоих концов, чтобы получить: 1521 = 5x ^ 2
Используя теорему Пифагора, как определить длину ноги прямоугольного треугольника, если длина другой ноги составляет 8 футов, а длина гипотенузы - 10 футов?
Другая нога 6 футов в длину. Теорема Пифагора говорит о том, что в прямоугольном треугольнике сумма квадратов двух перпендикулярных линий равна квадрату гипотенузы. В данной задаче одна нога прямоугольного треугольника имеет длину 8 футов, а гипотенуза - 10 футов. Пусть другая нога будет х, тогда по теореме х ^ 2 + 8 ^ 2 = 10 ^ 2 или х ^ 2 + 64 = 100 или х ^ 2 = 100-64 = 36, т. Е. Х = + - 6, но как - 6 не допускается, x = 6, т.е. другая нога имеет длину 6 футов.
Одна нога прямоугольного треугольника составляет 96 дюймов. Как найти гипотенузу и другую ногу, если длина гипотенузы в 2,5 раза превышает длину другой ноги на 4 дюйма?
Используйте Пифагора, чтобы установить x = 40 и h = 104. Пусть x будет другой ногой, а затем гипотенуза h = 5 / 2x +4. Нам говорят, что первая нога y = 96. Мы можем использовать уравнение Пифагора x ^ 2 + y ^ 2 = h ^ 2 x ^ 2 + 96 ^ 2 = (5 / 2x + 4) ^ 2 x ^ 2 + 9216 = 25x ^ 2/4 + 20x +16 Изменение порядка дает нам x ^ 2 - 25x ^ 2/4 - 20x +9200 = 0 Умножить на -4 21x ^ 2 + 80x -36800 = 0 Используя квадратную формулу x = (-b + -sqrt (b ^ 2 - 4ac)) / (2a) x = (- (80) + - sqrt (6400 + 3091200)) / (- 42) x = (-80 + -1760) / 42, поэтому x = 40 или x = -1840/42 Мы можем игнорировать отрицательный ответ, когда имеем дело с реальным