Ответ:
Смотрите процесс решения ниже:
Объяснение:
Сначала назовем количество проданных билетов для взрослых:
И, давайте назовем количество проданных детских билетов:
Из информации в задаче мы можем написать два уравнения:
Уравнение 1: Мы знаем, что продали 295 билетов, поэтому можем написать:
Уравнение 2: Мы знаем стоимость билетов для взрослых и детей и знаем, сколько всего денег было собрано от продажи билетов, поэтому мы можем написать:
Шаг 1) Решите первое уравнение для
Шаг 2) Теперь мы можем заменить
Ответ: Было продано 193 билета для взрослых
Общее количество проданных билетов для взрослых и студенческих билетов составило 100. Стоимость для взрослых составляла 5 долларов за билет, а для студентов - 3 доллара за билет, что в сумме составляло 380 долларов. Сколько из каждого билета было продано?
Было продано 40 билетов для взрослых и 60 билетов для студентов. Количество проданных билетов для взрослых = x Количество проданных билетов для студентов = y Общее количество проданных билетов для взрослых и студенческих билетов составило 100. => x + y = 100 Стоимость для взрослых составляла 5 долларов США за билет, а стоимость для студентов - 3 доллара США за каждый. билет Общая стоимость x билетов = 5x Общая стоимость y билетов = 3y Общая стоимость = 5x + 3y = 380 Решение обоих уравнений, 3x + 3y = 300 5x + 3y = 380 [Вычитание обоих] => -2x = -80 = > x = 40 Следовательно, y = 100-40 = 60
Билеты на концерт были проданы взрослым за 3 доллара, а студентам - за 2 доллара. Если общее количество чеков составило 824, и было продано вдвое больше билетов для взрослых, чем студенческих билетов, то сколько из них было продано?
Я нашел: 103 студента, 206 взрослых, я не уверен, но я полагаю, что они получили 824 доллара от продажи билетов. Давайте назовем количество взрослых а и студентов с. Мы получаем: 3a + 2s = 824 и a = 2s, которые мы подставляем в первое: 3 (2s) + 2s = 824 6s + 2s = 824 8s = 824 s = 824/8 = 103 ученика и так: a = 2s = 2 * 103 = 206 взрослых.
Однажды вечером было продано 1600 билетов на концерт в Fairmont Summer Jazz Festival. Билеты стоят 20 долларов на крытые места в павильоне и 15 долларов на газонные места. Общая сумма поступлений составила 26 000 долларов. Сколько билетов каждого типа было продано? Сколько мест в павильоне было продано?
Было продано 400 билетов на павильон и 1200 билетов на газон. Давайте назовем проданные места в павильоне p, а сиденья на газоне проданы l. Мы знаем, что было продано в общей сложности 1600 билетов на концерты. Следовательно: p + l = 1600 Если мы решим для p, мы получим p + l - l = 1600 - 1 p = 1600 - l. Мы также знаем, что билеты в павильоны стоят 20 долларов, а билеты на газоны - 15 долларов, а общая сумма поступлений составила 26000 долларов. Следовательно: 20p + 15l = 26000 Теперь подстановка 1600 - l из первого уравнения во второе уравнение для p и решение для l при сохранении сбалансированности уравнения дает: 20 (16