Функции f (x) = - (x - 1) 2 + 5 и g (x) = (x + 2) 2 - 3 были переписаны с использованием метода завершающего квадрата. Является ли вершина для каждой функции минимумом или максимумом? Объясните свои аргументы в пользу каждой функции.
Если мы напишем квадратик в форме вершины: y = a (x-h) ^ 2 + k, то: bbacolor (white) (8888) - это коэффициент x ^ 2, bbhcolor (white) (8888) - ось симметрии. bbkcolor (white) (8888) - максимальное / минимальное значение функции. Также: если a> 0, то парабола будет иметь форму uuu и будет иметь минимальное значение. Если a <0, то парабола будет иметь форму nnn и будет иметь максимальное значение. Для заданных функций: a <0 f (x) = - (x-1) ^ 2 + 5color (white) (8888) это имеет максимальное значение bb5 a> 0 f (x) = (x + 2) ^ 2-3 цвета (белый) (8888888) минимальное значение bb (-3)
Пусть f (x) = x-1. 1) Убедитесь, что f (x) не является ни четным, ни нечетным. 2) Можно ли записать f (x) как сумму четной функции и нечетной функции? а) Если это так, предложите решение. Есть ли еще решения? б) Если нет, докажите, что это невозможно.
Пусть f (x) = | х -1 | Если бы f было четным, то f (-x) было бы равно f (x) для всех x. Если бы f было нечетным, то f (-x) было бы равно -f (x) для всех x. Заметим, что при x = 1 f (1) = | 0 | = 0 ф (-1) = | -2 | = 2 Поскольку 0 не равно 2 или -2, f не является ни четным, ни нечетным. Можно ли записать f как g (x) + h (x), где g четно, а h нечетно? Если бы это было правдой, то g (x) + h (x) = | х - 1 |. Назовите это утверждение 1. Замените x на -x. g (-x) + h (-x) = | -x - 1 | Поскольку g четно, а h нечетно, имеем: g (x) - h (x) = | -x - 1 | Назовите это утверждение 2. Соединяя утверждения 1 и 2, мы видим, что g (x) + h (x
Что является инверсией f (x) = (x + 6) 2 для x – 6, где функция g является инверсией функции f?
Извините, моя ошибка, на самом деле она сформулирована как "f (x) = (x + 6) ^ 2" y = (x + 6) ^ 2 с x> = -6, тогда x + 6 положительный, поэтому sqrty = x +6 И x = sqrty-6 для y> = 0 Таким образом, обратное значение f равно g (x) = sqrtx-6 для x> = 0