Если
Величина декартовых координат
Позволять
Величина
Угол
Но так как точка находится в четвертом квадранте, поэтому мы должны добавить
Обратите внимание, что угол дан в радианах.
Обратите внимание, что ответ
P - средняя точка отрезка AB. Координаты P: (5, -6). Координаты A (-1,10).Как вы находите координаты B?
B = (x_2, y_2) = (11, -22) Если известна одна конечная точка (x_1, y_1) и средняя точка (a, b) отрезка, то мы можем использовать формулу средней точки для найти вторую конечную точку (x_2, y_2). Как использовать формулу средней точки, чтобы найти конечную точку? (x_2, y_2) = (2a-x_1, 2b-y_1) Здесь (x_1, y_1) = (- 1, 10) и (a, b) = (5, -6) Итак, (x_2, y_2) = (2 цвета (красный) ((5)) - цвет (красный) ((- 1)), 2 цвета (красный) ((- 6)) - цвет (красный) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #
Как конвертировать (11, -9) в полярные координаты?
(sqrt220, tan ^ -1 (-9/11) + 2pi) или (14,2,5,60 ^ c) (x, y) -> (r, тета); (r, тета) = (sqrt (x ^ 2 +) y ^ 2), tan ^ -1 (y / x)) r = sqrt (x ^ 2 + y ^ 2) = sqrt (11 ^ 2 + (- 9) ^ 2) = sqrt (121 + 81) = sqrt202 ~~ 14.2 theta = tan ^ -1 (-9/11) Однако (11, -9) находится в квадранте 4, и поэтому мы должны добавить 2pi к нашему ответу. тета = tan ^ -1 (-9/11) + 2pi ~~ 5.60 ^ c (sqrt202, tan ^ -1 (-9/11) + 2pi) или (14.2,5.60 ^ c)
Как преобразовать декартовы координаты (10,10) в полярные координаты?
Декартово: (10; 10) Полярное: (10sqrt2; pi / 4) Проблема представлена на графике ниже: В двумерном пространстве точка найдена с двумя координатами: Декартовы координаты - это вертикальные и горизонтальные положения (x; y ). Полярные координаты - это расстояние от начала координат и наклон по горизонтали (R, альфа). Три вектора vecx, vecy и vecR образуют прямоугольный треугольник, в котором вы можете применить теорему Пифагора и тригонометрические свойства. Таким образом, вы найдете: R = sqrt (x ^ 2 + y ^ 2) alpha = cos ^ (- 1) (x / R) = sin ^ (- 1) (y / R) В вашем случае, то есть: R = sqrt (10 ^ 2 + 10 ^ 2) = sqrt (100 +