Ответ:
Площадь
Объяснение:
Периметр равностороннего треугольника
Обозначим сторону равностороннего треугольника как
Формула для площади равностороннего треугольника:
Высота треугольника увеличивается со скоростью 1,5 см / мин, а площадь треугольника увеличивается со скоростью 5 кв. См / мин. С какой скоростью изменяется основание треугольника, когда высота составляет 9 см, а площадь составляет 81 кв. См?
Это проблема, связанная с типом ставок (изменений). Интересующие переменные: a = высота, A = площадь, и, поскольку площадь треугольника A = 1 / 2ba, нам нужно b = base. Указанные скорости изменения приведены в единицах в минуту, поэтому (невидимой) независимой переменной является t = время в минутах. Нам дают: (да) / DT = 3/2 см / мин (дА) / DT = 5 см "" ^ 2 / мин. И нас просят найти (дБ) / DT, когда а = 9 см и А = 81 см «» ^ 2 A = 1 / 2ba, дифференцируя по t, получим: d / dt (A) = d / dt (1 / 2ba). Нам понадобится правило продукта справа. (dA) / dt = 1/2 (дБ) / dt a + 1 / 2b (da) / dt Нам были даны все
Длина каждой стороны равностороннего треугольника увеличена на 5 дюймов, поэтому периметр теперь составляет 60 дюймов. Как написать и решить уравнение, чтобы найти исходную длину каждой стороны равностороннего треугольника?
Я нашел: 15 "в" Давайте назовем исходные длины x: Увеличение на 5 "в" даст нам: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 перестановка: х + 5 = 60/3 х + 5 = 20 х = 20-5 х = 15 дюймов
Соотношение одной стороны треугольника ABC к соответствующей стороне аналогичного треугольника DEF составляет 3: 5. Если периметр треугольника DEF составляет 48 дюймов, каков периметр треугольника ABC?
"Периметр" треугольника ABC = 28,8 Так как треугольник ABC ~ треугольник DEF, тогда if ("сторона" ABC) / ("соответствующая сторона" DEF) = 3/5 цвет (белый) ("XXX") rArr ("периметр "ABC) / (" периметр "DEF) = 3/5, а поскольку" периметр "DEF = 48, мы имеем цвет (белый) (" XXX ") (" периметр "ABC) / 48 = 3/5 rArrcolor ( белый) ("XXX") "периметр" ABC = (3xx48) /5=144/5=28.8