Не забудьте вернуться к юнит-кругу.
Каждое из этих значений перемещено вправо
Введите функции синуса.
синий функция без перевод.
красный функция с перевод.
Установить ZOOM для опции 7 для функций триггера.
Нажмите ОКНО и установите Xmax на
Установите Xmin на 0.
нажмите GRAPH кнопка.
У меня есть два графика: линейный график с уклоном 0,781 м / с и график, который увеличивается с нарастающей скоростью со средним уклоном 0,724 м / с. Что это говорит мне о движении, представленном на графиках?
Поскольку линейный график имеет постоянный наклон, он имеет нулевое ускорение. Другой график представляет положительное ускорение. Ускорение определяется как { Deltavelocity} / { Deltatime} Итак, если у вас постоянный наклон, скорость не меняется, а числитель равен нулю. На втором графике скорость меняется, что означает, что объект ускоряется
График h (x) показан. График представляется непрерывным в том месте, где меняется определение. Покажите, что h на самом деле непрерывно, найдя левый и правый пределы и показывая, что определение непрерывности выполнено?
Пожалуйста, обратитесь к объяснению. Чтобы показать, что h непрерывен, нам нужно проверить его непрерывность при x = 3. Мы знаем, что h будет продолжен при x = 3, если и только если, lim_ (от x до 3-) h (x) = h (3) = lim_ (от x до 3+) h (x) ............ ................... (AST). От х до 3-, х лт 3:. (х) = - х ^ 2 + 4x + 1. :. lim_ (от x до 3-) h (x) = lim_ (от x до 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (от x до 3-) (х) = 4 ............................................ .......... (аст ^ 1). Аналогично, lim_ (от x до 3+) h (x) = lim_ (от x до 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_ (от x до 3+) h (x) =
Что такое график r = sin ^ 2 (π / 8 - θ / 4)?
Я использовал графический калькулятор и вложил изображение в объяснение. Вот график: