Ответ:
От руки, а затем проверяется с помощью MATLAB: 41 -14 -19
Объяснение:
Когда вы берете перекрестный продукт, я чувствую, что это облегчает добавление в направлениях вектора единицы
Мы будем использовать все три, так как это трехмерные векторы, с которыми мы имеем дело. Если бы это было 2d, вам нужно было бы использовать только
Теперь мы настроили матрицу 3x3 следующим образом (Socratic не дает мне хорошего способа создания многомерных матриц, извините!):
Теперь, начиная с каждого единичного вектора, идите по диагонали слева направо, взяв произведение этих чисел:
Далее возьмите произведения значений, идущих справа налево; снова, начиная с единичного вектора:
Наконец, возьмите первый набор и вычтите из него второй набор
теперь это может быть переписано в матричной форме, с
Что является перекрестным произведением <0,8,5> и <-1, -1,2>?
<21,-5,8> We know that vecA xx vecB = ||vecA|| * ||vecB|| * sin(theta) hatn, where hatn is a unit vector given by the right hand rule. So for of the unit vectors hati, hatj and hatk in the direction of x, y and z respectively, we can arrive at the following results. color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk
Что является перекрестным произведением [0,8,5] и [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] Перекрестное произведение vecA и vecB дается выражением vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, где theta - положительный угол между vecA и vecB, а hatn - единичный вектор с направлением, заданным правилом правой руки. Для единичных векторов hati, hatj и hatk в направлениях x, y и z соответственно color (white) ((color (black) {hati xx hati = vec0}, color (black) {qquad hati xx hatj = hatk} , цвет (черный) {qquad hati xx hatk = -hatj}), (цвет (черный) {hatj xx hati = -hatk}, цвет (черный) {qquad hatj xx hatj = vec0}, цвет (черный) {qquad hatj xx hatk = hati}), (цвет (че
Что является перекрестным произведением [-1,0,1] и [0,1,2]?
Перекрестное произведение равно = 1,2 - 1,2, -1 cross Перекрестное произведение рассчитывается по определителю | (veci, vecj, veck), (d, e, f), (g, h, i) | где 〈d, e, f〉 и 〈g, h, i〉 2 вектора. Здесь мы имеем veca = 〈- 1,0,1〉 и vecb = 〈0,1,2〉 Следовательно, | (veci, vecj, veck), (-1,0,1), (0,1,2) | = VECI | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + Век | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = vecc Проверка с помощью двухточечных произведений 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 〈-1,2, -1〉. 〈0,1,2〉 = 0 + 2-2 = 0 Итак, vecc перпендикулярен veca и vecb