Какова форма пересечения наклона линии, проходящей через (6,2) с наклоном -3/5?

Какова форма пересечения наклона линии, проходящей через (6,2) с наклоном -3/5?
Anonim

Ответ:

# y = -3/5 x + 28/5 #

Объяснение:

Уравнение прямой в форме наклона-пересечения у = мх + с где m представляет собой градиент (наклон), а c - y-перехват.

дано # m = -3/5 ", тогда уравнение в частных производных имеет вид" y = -3/5 x + c #

Чтобы найти c, используйте точку на линии (6, 2) и подставьте в уравнение.

х = 6, у = 2: # -3 / 5xx6 + c = 2 rArr c = 2 + 18/5 = 28/5 #

следовательно, уравнение: # y = -3/5 x + 28/5 #