Уравнение прямой: 2x + 3y - 7 = 0, найдите: - (1) наклон прямой (2) уравнение прямой, перпендикулярной данной прямой и проходящей через пересечение линии x-y + 2 = 0 и 3x + y-10 = 0?
-3x + 2y-2 = 0 color (white) ("ddd") -> color (white) ("ddd") y = 3 / 2x + 1 Первая часть во многих деталях демонстрирует, как работают первые принципы. Привыкнув к ним и используя ярлыки, вы будете использовать намного меньше строк. цвет (синий) («Определить пересечение исходных уравнений») x-y + 2 = 0 "" ....... Уравнение (1) 3x + y-10 = 0 "" .... Equation ( 2) Вычтите x с обеих сторон уравнения (1), давая -y + 2 = -x Умножьте обе стороны на (-1) + y-2 = + x "" .......... Уравнение (1_a ) Использование уравнения (1_a) вместо x в уравнении (2) color (green) (3
Каково уравнение прямой, которая проходит через точку (10, 5) и перпендикулярна прямой, уравнение которой равно y = 54x 2?
Уравнение линии с наклоном -1/54 и проходящей через (10,5) имеет цвет (зеленый) (x + 54y = 280 y = 54x - 2 Наклон m = 54 Наклон перпендикулярной линии m_1 = 1 / -m = -1 / 54 Уравнение линии с уклоном -1/54 и проходящей через (10,5) имеет вид y - 5 = - (1/54) * (x - 10) 54y - 270 = -x + 10 x + 54y = 280
Каково уравнение прямой, которая имеет наклон m = frac {2} {9} и проходит через точку (5,2)?
Посмотрите процесс решения ниже: Мы можем использовать формулу для наклона точки, чтобы написать и уравнение для этой линии. Формула точечного уклона гласит: (y - цвет (красный) (y_1)) = цвет (синий) (m) (x - цвет (красный) (x_1)), где color (blue) (m) - наклон и цвет (красный) (((x_1, y_1))) - точка, через которую проходит линия. Подставляя наклон и значения из точки из задачи, получаем: (y - цвет (красный) (2)) = цвет (синий) (2/9) (x - цвет (красный) (5)) Мы можем решить это уравнение для y, чтобы преобразовать уравнение в форму пересечения наклона. Форма пересечения наклона линейного уравнения имеет вид: у = цвет (крас