Ответ:
21
Объяснение:
Я уверен, что есть более аналитический, теоретический способ продолжить, но вот мысленный эксперимент, который я сделал, чтобы придумать ответ для случая из 7 пунктов:
Нарисуйте 3 точки в углах красивого равностороннего треугольника. Вы легко убедитесь, что они определяют 3 линии, соединяющие 3 точки.
Таким образом, мы можем сказать, что есть функция f, такая что f (3) = 3
Добавьте 4-е очко. Нарисуйте линии, чтобы соединить все три предыдущих точки. Вам нужно еще 3 строки, чтобы сделать это, в общей сложности 6.
f (4) = 6.
Добавьте 5-е очко. подключиться ко всем 4 предыдущим пунктам. Вам нужно 4 дополнительные строки, чтобы сделать это, в общей сложности 10.
Вы начинаете видеть шаблон:
f (n) = f (n-1) + n-1
Отсюда можно перейти к ответу:
f (5) = f (4) + 4 = 10
f (6) = f (5) + 5 = 15
f (7) = f (6) + 6 = 21
УДАЧИ
Уравнение прямой: 2x + 3y - 7 = 0, найдите: - (1) наклон прямой (2) уравнение прямой, перпендикулярной данной прямой и проходящей через пересечение линии x-y + 2 = 0 и 3x + y-10 = 0?
-3x + 2y-2 = 0 color (white) ("ddd") -> color (white) ("ddd") y = 3 / 2x + 1 Первая часть во многих деталях демонстрирует, как работают первые принципы. Привыкнув к ним и используя ярлыки, вы будете использовать намного меньше строк. цвет (синий) («Определить пересечение исходных уравнений») x-y + 2 = 0 "" ....... Уравнение (1) 3x + y-10 = 0 "" .... Equation ( 2) Вычтите x с обеих сторон уравнения (1), давая -y + 2 = -x Умножьте обе стороны на (-1) + y-2 = + x "" .......... Уравнение (1_a ) Использование уравнения (1_a) вместо x в уравнении (2) color (green) (3
График прямой l в плоскости xy проходит через точки (2,5) и (4,11). График прямой m имеет наклон -2 и x-точку пересечения 2. Если точка (x, y) является точкой пересечения линий l и m, каково значение y?
Y = 2 Шаг 1: Определите уравнение линии l. По формуле наклона m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3. Теперь по форме наклона точки уравнение y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Шаг 2: Определить уравнение линии m Пересечение x всегда будет имеют y = 0. Следовательно, данная точка (2, 0). С наклоном имеем следующее уравнение. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Шаг 3: Написать и решить систему уравнений. Мы хотим найти решение системы {(y = 3x - 1), (y = -2x + 4):} Подстановкой: 3x - 1 = -2x + 4 5x = 5 x = 1 Это означает, что y = 3 (1) - 1 = 2. Надеюсь, это поможет
ПЕРИМЕТР равнобедренной трапеции ABCD равен 80см. Длина линии AB в 4 раза больше длины линии CD, которая составляет 2/5 длины линии BC (или линий, которые одинаковы по длине). Какова площадь трапеции?
Площадь трапеции составляет 320 см ^ 2. Пусть трапеция будет такой, как показано ниже: Здесь, если мы примем меньшую сторону CD = a и большую сторону AB = 4a и BC = a / (2/5) = (5a) / 2. Таким образом, BC = AD = (5a) / 2, CD = a и AB = 4a. Следовательно, периметр равен (5a) / 2xx2 + a + 4a = 10a, но периметр составляет 80 см. Следовательно, a = 8 см. и две стороны параллели, показанные как а и b, равны 8 см. и 32 см. Теперь мы рисуем перпендикуляры от C и D к AB, который образует два идентичных прямоугольных треугольника, гипотенуза которых равна 5 / 2xx8 = 20 см. и основание (4xx8-8) / 2 = 12, и, следовательно, его высота