Шаг 1: Определить координаты конечной точки K
Шаг 2: Используйте теорему Пифагора для определения длины
Шаг 1
Если М является серединой JK, то изменения в
Координаты К:
Шаг 2:
основанный на теореме Пифагора
Грегори нарисовал прямоугольник ABCD на координатной плоскости. Точка А находится в точке (0,0). Точка B находится в (9,0). Точка C находится в (9, -9). Точка D находится в (0, -9). Найти длину бокового CD?
Side CD = 9 единиц Если мы игнорируем координаты y (второе значение в каждой точке), легко сказать, что, поскольку боковой CD начинается в x = 9 и заканчивается в x = 0, абсолютное значение равно 9: | 0 - 9 | = 9 Помните, что решения для абсолютных значений всегда положительны. Если вы не понимаете, почему это так, вы также можете использовать формулу расстояния: P_ "1" (9, -9) и P_ "2" (0, -9 ) В следующем уравнении P_ "1" - это C, а P_ "2" - это D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^ 2 sqrt ((0 - 9) ^ 2 + (-9 - (-9)) sqrt ((- 9) ^
На координатной сетке AB есть конечная точка B в точке (24, 16), средняя точка AB - это P (4, -3), какова Y-координата точки A?
Давайте возьмем координаты x и y отдельно. X и y средней точки - это средние значения конечных точек. Если P является средней точкой, то: x_P = (x_A + x_B) / 2-> 4 = (x_A + 24) / 2-> x_A = -16 y_P = (y_A + y_B) / 2 -> - 3 = (y_A + 16) / 2-> y_A = -22
Точка A находится в точке (-2, -8), а точка B находится в точке (-5, 3). Точка A повернута (3pi) / 2 по часовой стрелке относительно начала координат. Каковы новые координаты точки A и насколько изменилось расстояние между точками A и B?
Пусть Начальная полярная координата A, (r, theta) Дана Начальная декартова координата A, (x_1 = -2, y_1 = -8). Таким образом, мы можем написать (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) После 3pi / На 2 оборота по часовой стрелке новая координата A становится x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + theta ) = - rsin (3pi / 2-theta) = rcostheta = -2 Начальное расстояние A от B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 конечное расстояние между новой позицией A ( 8, -2) и B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Так что разница = sqrt194-sqrt130 такж