Ответ:
Дисперсия
Объяснение:
В биномиальном распределении у нас есть довольно хорошие формулы для среднего значения и вероятности:
Итак, дисперсия
Стандартное отклонение (как обычно) является квадратным корнем дисперсии:
Каковы среднее значение, медиана, мода, дисперсия и стандартное отклонение {4,6,7,5,9,4,3,4}?
Среднее = 5,25 цвета (белый) ("XXX") Медиана = 4,5 цвета (белый) ("XXX") Режим = 4 Население: дисперсия = 3,44цвет (белый) ("XXX") Стандартное отклонение = 1,85 Образец: цвет (белый) ) ("X") Дисперсия = 43,93цвет (белый) ("XXX") Стандартное отклонение = 1,98 Среднее значение - среднее арифметическое значений данных. Медиана - это среднее значение, когда значения данных были отсортированы (или среднее значение для 2 средние значения, если есть четное количество значений данных). Режим - это значение (я) данных, которые встречаются с наибольшей частотой. Дисперсия и стандартн
Предположим, что в классе учащихся средний балл по математике SAT составляет 720, а средний речевой балл - 640. Стандартное отклонение для каждой части - 100. Если возможно, найдите стандартное отклонение составного балла. Если это невозможно, объясните почему.
141 Если X = оценка по математике и Y = устная оценка, E (X) = 720 и SD (X) = 100 E (Y) = 640 и SD (Y) = 100 Вы не можете добавить эти стандартные отклонения, чтобы найти стандарт отклонение для составного балла; Тем не менее, мы можем добавить дисперсии. Дисперсия - это квадрат стандартного отклонения. var (X + Y) = var (X) + var (Y) = SD ^ 2 (X) + SD ^ 2 (Y) = 100 ^ 2 + 100 ^ 2 = 20000 var (X + Y) = 20000, но так как мы хотим стандартное отклонение, просто возьмите квадратный корень из этого числа. SD (X + Y) = sqrt (var (X + Y)) = sqrt20000 ~~ 141 Таким образом, стандартное отклонение составного балла для учащихся в кла
Каково стандартное отклонение биномиального распределения с n = 10 и p = 0,70?
1.449 Дисперсия = np (1-p) = 10 * 0.7 * 0.3 = 2.1 Таким образом, стандартное отклонение = sqrt (2.1) = 1.449